Mapping Molecules Quantitatively in Confocal Fluorescence Microscopy

Marcelle König, Caroline Berlage, Paja Reisch, Felix Koberling, Haisen Ta, Rainer Erdmann

PicoQuant GmbH, Rudower Chaussee 29, 12489, Berlin, Germany

24th International Workshop on "Single Molecule Spectroscopy and Super-resolution Microscopy in the Life Sciences" September 12-14, 2018 in Berlin, Germany

> Copyright of this document belongs to PicoQuant GmbH. No parts of it may be reproduced, translated or transferred to third parties without written permission of PicoQuant GmbH. © PicoQuant GmbH, 2018

Quantification of Molecules

Constraint		Stochastic protein expression in individual cells at the single molecule level			
Science 05 Jan 2007: Vol. 315, Issue 5808, pp. 81-84 DOI: 10.1126/science.1133992	cence of 3.19.2007. 10.15.15.19.69.000, pp.81-84 01.10.1126/science.1133992 Editorial NATURE METHODS VOL.		8–362 (16 March 2006) ture04599 tion	Received: 12 September 2005 Accepted: 23 January 2006 Published online: 16 March 2006	
	With the aid of informatics, microscopy is in the evolution into a more quantitative and powerful Every laboratory with a fluorescence microsc should consider counting molecules			TIVE h a fluorescence microscope sting molecules	

Columbus, OH 43210

 \rightarrow Variety of research objectives for counting and mapping of molecules and their concentrations in cells

- Limited to small numbers
- → Destructive

V. Coffman et al., Trends in Biochem. Sc., 2012

Needs calibration measurements

Fluctuation Analysis Based Methods

- FCS / FLCS
- PCH
- N&B

• ...

Localization Microscopy

- PALM
- dSTORM
- PAINT

...

•

Outline

THE METHOD: Counting by Photon Statistics (CoPS)

PROOF OF PRINCIPLE: Measurements with Origami

ARTICLE

Received 24 Mar 2014 | Accepted 2 Jul 2015 | Published 13 Aug 2015

Mapping molecules in scanning far-field fluorescence nanoscopy

Haisen Ta¹, Jan Keller¹, Markus Haltmeier^{2,3}, Sinem K. Saka⁴, Jürgen Schmied⁵, Felipe Opazo⁴, Philip Tinnefeld⁵, Axel Munk^{2,6} & Stefan W. Hell¹

TOWARDS BIOLOGICAL SAMPLES: First results

OPEN

Counting by Photon Statistics (CoPS)

The Principle behind Counting by Photon Statistics (CoPS) is similar to antibunching:

A single molecule can only emit one photon at a time.

Method developed by Dirk-Peter Herten, Heidelberg University

Confocal microscope with pulsed excitation and four detectors

Detection of coincident photons

(photons that arrive after the same laser pulse)

Adapted from Grußmayer et al., Phys. Chem. Chem. Phys., 2017, Suppl.

Measurement of the distribution of multiple photon detection events

Relative probabilities depend on number of emitters N, individual brightness p and number of detectors m.

Mapping Molecules based on Counting by Photon Statistics (CoPS)

Method published by Haisen Ta et al., Nature Communications, 2015

0

Map of Molecule Distributions

Analysis of multi-photon detection events (immobilized Origami with 9 ATTO647N)

Grey scalebar: Intensity [photons /pixel]; Color scalebar: Number of emitters per spot (summed up density per pixel)

Parameters:

10 µW excitation, 300 µs px dwell time, 20nm px size, 10 MHz, 500 x 500 px

Method published by Haisen Ta et al., Nature Communications, 2015

10

Number of emitters

15

20

5

Histogram of the number

of emitters in one origami

25

20

15

10

5

0 ·

0

Red DNA-Origami with varying number of emitters (GattaQuant)

- 1 ATTO647N
- 4 ATTO647N
- 9 ATTO647N
- 17 ATTO647N
- 23 ATTO647N
- 30 ATTO647N

http://www.gattaquant.com/files/gatta-brightness_product_sheet_1.pdf

Expected numbers of emitters per origami:

Calculation assuming binomial distribution with

- n binding sites
- binding probability p

Proof of Principle: Red DNA Origami

Red DNA-Origami with varying number of emitters

- 1 ATTO647N
- 4 ATTO647N
- 9 ATTO647N
- 17 ATTO647N
- 23 ATTO647N
- 30 ATTO647N

http://www.gattaquant.com/files/gatta-brightness_product_sheet_1.pdf

Expected numbers of emitters per origami:

Calculation assuming binomial distribution

Measured brightness for increasing numbers of emitters per origami:

- Number of detected photons per identified origami in image
- Normalized for one emitter

Counting by Photon Statistics: Results with Red DNA Origami

CoPS **overestimates** the emitter number for higher numbers per cluster.

Possible issues:

- Saturation of detection electronics
- Detector afterpulsing
- Interaction of fluorophores in DNA origami

Proof of Principle: Blue/Green DNA Origami

Blue/green DNA-Origami with varying number of emitters (GattaQuant)

- 1 ATTO488
- 4 ATTO488
- 12 ATTO488
- 24 ATTO488

Expected numbers of emitters per origami:

Calculation assuming binomial distribution with

- n binding sites
- binding probability p

Measured brightness for increasing numbers of emitters per origami:

- Number of detected photons per identified origami in image
- Normalized for one emitter

Counting by Photon Statistics: Results with Blue/Green DNA Origami

Counting by photon Statistics across the Visible Spectrum

Identification of suitable fluorophores

Photostability time τ_{ph} versus detection probability p for

- red (640 nm excitation),
- green (532 nm excitation) and
- blue (470 nm excitation) dyes.

Grey line: Minimum photostability time to retain 90% of all emitters

Published by Grußmayer et al., Phys. Chem. Chem. Phys., 2017

Sample :Measured photostability time τph and detection probability p for Origami with 4 ATTO488 (normalized to one emitter)

Biological Samples

Plasma membranes with YFP S. Munck, KU Leuven

Nuclear Pore Complex with eGFP A. Rybina, A. Politi, J. Ellenberg, EMBL, Heidelberg

Additional challenges in biological samples

- Even higher background
- Very dense, overlapping clusters
- Not two-dimensional, differences in zposition of clusters
- Fluorescent proteins not as bright, but slightly more stable than Atto488

Biological Samples: Nuclear Pore Complex (16 Emitters expected, EGFP)

4

2

Bottom of single interphase cell: Single pores with 16 emitters each

Calculated emitter density per pixel

scale bar: 1 µm

Histogram of emitter numbers per pore

Homozygous cell line NUP214-mEGFP (Sample kindly provided by Arina Rybina, Antonio Politi, Jan Ellenberg, EMBL)

Summary of What Works So Far...

Analysis with Matlab-Software from Haisen Ta

Sample Requirements

- Fixed sample with low background
- Bright and stable fluorophores (preferably 640 nm excitation)
- Quantification of single clusters
- Less than 10 Emitters
- Narrow distribution of emitter numbers
- 2D

Acknowledgement

Dirk-Peter Herten and lab members **Johan Hummert** and **Wioleta Chmielewicz**, Heidelberg University

Sample preparation

- Sebastian Munck
 KU Leuven
- Arina Rybina, Antonio Politi, Jan Ellenberg, EMBL, Heidelberg

Caroline Berlage, M.Sc. student (Supervisor Oliver Benson, HUB)

Poster P2: Molecular Counting by Photon Statistics

- Experimental parameters
- Origami with Atto488
- Photobleaching
- Limitations and Outlook